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Abstract 
 

 

This thesis describes the design and implementation of the discretized Extended 

Kalman Filter (EKF) for the estimation of the speed of the induction motor. In this 

implementation, the speed is treated as an additional state of the system and the EKF is 

designed to estimate this state. The inputs for the filter are the inverter voltage and stator 

currents. The simulations are carried out in Matlab Simulink and after the verification of 

the filter, the algorithm is tested with laboratory motor. The filter is implemented on the 

dSPACE DS1103 microprocessor controlling unit, which also handles the real-time data 

logging and visualization, and the control user interface. Predictive Torque Control (PTC) 

strategy is employed for the motor drive. The experimental part presents the speed 

determination accuracy in various working points including high and low speed areas. 

Then the optimization of the filtering process for better response in transients and stable 

states are performed. Finally, the results are evaluated. 

 

 

Keywords: Induction Motor, Extended Kalman Filter, MATLAB/Simulink, dSPACE, 

Sensorless Speed Determination 
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Abstrakt  

 

 

Tato práce popisuje návrh a implementaci diskretizovaného rozšířeného 

Kalmanova filtru (EKF) pro odhad rychlosti asynchroního motoru. V této implementaci 

EKF je rychlost motoru považována za další stav systému a filtr je navržen tak, aby 

odhadoval právě tento stav. Vstupem pro filtr jsou napětí na výstupu měniče a statorové 

proudy. Simulace jsou provedeny v prostředí Matlab Simulink a po ověření funkčnosti je 

algoritmus otestován i na laboratorním motoru. Filtr je realizován na mikroprocesorové 

řídicí jednotce dSPACE DS1103, která také obsluhuje záznam a vizualizaci dat v reálném 

čase a uživatelské rozhraní ovládání. Pro řízení pohonu je použita strategie prediktivního 

řízení momentu (PTC). V experimentální části je předvedena přesnost stanovení rychlosti 

v různých pracovních bodech včetně oblastí vysokých a nízkých otáček. Dále je provedena 

optimalizace filtru pro lepší odezvu v přechodových dějích i ve stabilních stavech. 

Nakonec je proveden rozbor získaných výsledků. 

 

 

 

Klíčová slova: Asynchronní motor, Rozšířený Kalmanův filtr, MATLAB/Simulink, 

dSPACE, bezsenzorové zjišťování otáček 
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Chapter 1 

Introduction 

The invention of Induction Motor was in 1888 by Nikola Tesla. This remarkable 

building up of a machine that didn’t require brushes created a new sub stream in Electrical 

Engineering which gave rise to higher utilization of three-phase generation and 

distribution systems. Over the years as more electrical motors were developed, the 

mainstream uses of the induction motors were for the fixed speed operation while dc 

machines were utilized for the variable speed operations. 

The variable speed operation used in dc machines using Ward-Leonard 

configuration requires 3 machine models (2 DC machines and 1 induction machine) 

making it more expensive and difficult for maintenance. But with the development of 

power electronic devices, there were variable speed drives for both DC and AC machines. 

The new power electronics (PE) components offered better torque speed and flux control 

than in the previous cases. With the development of Variable Frequency Drives (VFD) 

using new PE components, the new and better control schemes started to develop. There 

were developments of traditional Scalar controls like V/f control and new ones in the 

Vector control domains.  

These days the development and research into the Vector control strategies are 

very extensive. While Direct Torque Control and Field Oriented Control inside the Vector 

control domain are predominant in the industrial scale with the high-performance 

electrical drive systems, Model Predictive Control strategies are gaining popularity too. 

The reasons for gaining popularity for the new control schemes while the existing ones 

are pretty effective being that, MPC usually has lower conceptual complexity[1] and the 

inclusion of the system constraints is easy along with lower cost function for the inner 

controller in the computation [1].  

Even when applying these modern techniques they still require sensors for the 

minimal input conditions that give reference to the machine parameters. Those parameters 

being terminal voltages and currents and speeds. While the measurements of the voltages 

and currents are necessary factors the development of microprocessors and higher and 

compact computation devices have sparked and made possible the ideas for the sensorless 
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speed determination techniques. The sensorless vector controls of motor drives refer 

generally to the speed sensorless drives. The use of speed sensors is not always 

environmentally friendly. They are prone to large shocks and other environmental 

conditions [2]. The development of sensorless control and predictive analysis is effective 

from the perspective of reliability, and maintainability. The sensorless controls are more 

robust in contrast to the use of sensors in other methods. In addition to this, the economic 

aspects of the sensorless controls are more desirable [3]. 

Primary aspects of the sensorless control are the estimation of the rotor speed 

using predictive filter algorithms, and coupling the estimated speed with the MPC 

strategies. In this thesis, we present the derivation, implementation and hardware 

realization of one of such methods of sensorless control using Kalman Filter techniques, 

in a laboratory motor and the comparison of such a filter response with the actual response 

and the references given. The primary task discussed in this thesis includes the design and 

implementation of the Kalman Filter and the reliability of the estimated speed, in 

comparison with the actual motor speed and the reference speed. The further extension of 

the estimated speed has been on the deployment of the sensorless vector control of the 

motor. But the thesis primarily focusses on the estimation of the rotor speed. We are 

starting with the mathematical modeling of the filter and the machine models used in this 

thesis in Chapter 2. In Chapter 3, we will discuss the Simulation of the filter and the motor 

model and control strategies in Matlab Simulink. Chapter 4 discusses the workplace setup 

and the hardware assembled to realize the model verified in the simulations to the 

laboratory. In Chapter 5 the various experimental results are analyzed. Chapter 6 is the 

Conclusion for the thesis. Following sections after it is the References. 
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Chapter 2 

Kalman Filter and its Design for Induction Motor Speed 

Determination 

2.1 Kalman Filter: 

The estimation of the rotor speed in this thesis focuses on the Kalman Filter and 

Extended Kalman Filter. The Kalman Filter (KF) is a mathematical tool for estimation of 

a state based on the previous state and the observed values of the noise like measurement 

noise and the system noise and measured values – like outputs. They are primarily used in 

prediction and estimation fields that include GPS operations, AI applications where 

positioning and band of errors are significant, and unmanned operations like space and 

military operations. 

 

Figure 2.1: Typical application of Kalman Filter 

The KF operates in 2 repeating steps, the prediction and correction states. The 

initial prediction stage estimates a value of the desired state from the inputs and previous 

state variables. Then the uncertainty of the estimated value is calculated from the 

difference between previous prediction and the measured reality. This uncertainty is 

regarded not to change within the current sample. The predicted state variable are then 

corrected accordingly. This process of prediction and correction produces the final 

estimated values to be closer to the real values. 
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2.1.1 The Process to be estimated: 

KF is used in the estimation of a discrete-time controlled process that is governed 

by the linear stochastic difference equation. [4] 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑘 𝑢𝑘−1 + 𝑣𝑘−1  (2.1) 

And the output (observation) given by 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑤𝑘    (2.2) 

Where,  

𝑝(𝑣) ~ 𝑁(0,𝑄)   (2.3) 

𝑝(𝑤) ~ 𝑁(0, 𝑅)   (2.4)  

Where, uk represents the input parameter or the control vector, Fk is the state transition 

model, Bk is the control input model, and Hk is the observation model which maps the true 

state space into the observed space or the output.  The random variables wk and vk in 

equations 2.1 and 2.2 represent the process and measurement noise respectively. The 

noises are uncorrelated, assumed to be white noise with normal probability distributions. 

The Q and R are the system noise covariance matrix and measurement noise covariance 

matrix. While they are changing constantly in every time step and measurement, it is 

assumed that they are constant matrices. [4] 

 

2.1.2 The Estimation Process: 

Like we described earlier the filtering process occurs over two stages: prediction 

and correction. The initial conditions for the first stage are given with the prior knowledge 

of the process to be estimated or state as we would call it here forward, and the state 

covariance matrix of prediction (P). The first stage initializes the state vectors and the 

covariance matrices, then the preliminary prediction of the state vector and the covariance 

matrix of prediction. On the second stage of the loop, which is the correction stage, the 

measurement noise covariance matrices come into play. Initially, the Kalman Gain is 

computed based on the predicted P in the first stage, along with the inclusion of 

measurement noise in the equation. After the calculation of the Kalman Gain, the state 

vector predicted in the first stage are corrected based on the error factor developed from 

the difference of the measured and predicted outcome values. Then the correction of the 

covariance matrix of prediction is done for the next loop which acts as the initial condition 
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for the next loop. In this way, the 2 stage loop cycle runs to give an estimate for any 

discrete-time controlled process governed by the linear stochastic difference equation.[4] 

 

2.1.3 Mathematical Representation: 

Predict: 

Predicted State:     �̂�𝑘|𝑘−1 = 𝐹𝑘�̂�𝑘−1|𝑘−1 + 𝐵𝑘 𝑢𝑘  (2.5) 

Covariance of Prediction  𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘   (2.6) 

Update: 

Kalman Gain Computation:   𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (2.7) 

Measurement residual:   �̃�𝑘 = 𝑦𝑘 − 𝐻𝑘�̂�𝑘|𝑘−1   (2.8) 

Updated state estimate:    �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘�̃�𝑘    (2.9) 

Updated Covariance of Prediction 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃𝑘|𝑘−1  (2.10) 

 

2.2 Extended Kalman Filter: 

The Kalman Filter discusses above is only valid for linear functions, while most 

of the real systems are governed by non-linear functions. The Extended Kalman Filter 

(EKF) is the nonlinear version of the Kalman Filter. It linearizes about the current mean 

and covariance. [5] While EKF had been used extensively as a standard tool for estimation 

of nonlinear states in navigation systems and GPS, with the introduction of Unscented 

Kalman Filter the extensive use has reduced. [6] 

In the modeling of the filter in this thesis, the Extended Kalman Filter algorithm has been 

used. The difference in the formulation of the EKF in comparison to KF is such that the 

state transition and observation state space models may not be linear functions of the state 

but are often many nonlinear functions. [7]  

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑣𝑘   (2.11) 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑤𝑘   (2.12) 

Like in the previous case with KF the random variables vk and wk are the system 

and measurement noises, which are both assumed to be zero mean multivariate Gaussian 

noise with covariance Qk and Rk respectively. The vector uk is the input control vector. 
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The functions f and h each compute the predicted states using the data from the 

previous estimate and predicted measurement from predicted state respectively. Because 

of the nonlinear state of the model being applied, they cannot be applied directly to the 

covariances. To solve this, a Jacobian is computed for both the functions with the current 

predicted states. By creating the Jacobians for the covariances, the non-linear function is 

linearized around the current estimate and the matrices can be used in the Kalman Filter 

equations. 

 

2.2.1 Mathematical Representation: 

The mathematical representation is slight different from the original one in the 

Extended Kalman Filter due to the Jacobian calculations. They are presented below: 

Predict: 

Predicted State:     �̂�𝑘|𝑘−1 = 𝑓(�̂�𝑘−1|𝑘−1, 𝑢𝑘)     (2.5) 

Covariance of Prediction  𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘      (2.6) 

Update: 

Kalman Gain Computation:   𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (2.7) 

Measurement residual:   �̃�𝑘 = 𝑦𝑘 − ℎ(�̂�𝑘|𝑘−1)      (2.8) 

Updated state estimate:    �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘�̃�𝑘       (2.9) 

Updated Covariance of Prediction 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃𝑘|𝑘−1    (2.10) 

Where the state transition and output observation matrices, 𝐹𝑘 and 𝐻𝑘  are defined as 

following Jacobians, 

𝐹𝑘 = 
𝜕𝑓

𝜕𝑥
|
𝑥𝑘−1|𝑘−1,𝑢𝑘

     (2.11) 

𝐻𝑘 = 
𝜕ℎ

𝜕𝑥
|
𝑥𝑘|𝑘−1

     (2.12) 

 

2.3 Mathematical Model of the Induction Motor  

For the simulation of the motor model, a dynamic model expressed in the stator 

flux oriented reference frame was chosen. In this modeling, the state variables are chosen 
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as stator currents ids, iqs, and the rotor flux φdr, φqr as state variables. The state space 

representation of such a model can be written as: 

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐴 ∗ 𝑋(𝑡) + 𝐵 ∗ 𝑢(𝑡)       (2.13) 

𝑌(𝑡) = 𝐶 ∗ 𝑋(𝑡)       (2.14) 

Where,   

𝑋 = [𝑖𝑑𝑠  𝑖𝑞𝑠  𝜑𝑑𝑟  𝜑𝑞𝑟]
𝑇
       (2.15) 

𝑌 =  [𝑖𝑑𝑠  𝑖𝑞𝑠  ]
𝑇       (2.16) 

𝑢 =  [𝑣𝑑𝑠 𝑣𝑞𝑠]
𝑇          (2.17) 

𝐴 =

[
 
 
 
 
 −(

𝑅𝑠

𝜎𝐿𝑠
+ 

1−𝜎

𝜎𝜏𝑟
) 0

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟

1

𝜏𝑟
𝜔𝑟

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟

0 − (
𝑅𝑠

𝜎𝐿𝑠
+ 

1−𝜎

𝜎𝜏𝑟
) −𝜔𝑟

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟

1

𝜏𝑟

𝐿𝑚

𝜏𝑟

0

0
𝐿𝑚

𝜏𝑟

−
1

𝜏𝑟

𝜔𝑟

−𝜔𝑟
1

𝜏𝑟 ]
 
 
 
 
 

  

𝐵 =  

[
 
 
 
 

1

𝜎𝐿𝑠
0

0
1

𝜎𝐿𝑠

0
0

0
0 ]

 
 
 
 

          

𝐶 =  [
1 0 0 0
0 1 0 0

]       

Where,  

 Rs  = Stator Resistance (ohm) 

 Rr = Rotor Resistance (ohm) 

 Ls = Stator self-inductance (H) 

 Lr = Rotor self-inductance (H) 

 Lm = Mutual inductance (H) 

 σ =  1 − 
𝐿𝑚
2

𝐿𝑠𝐿𝑟
   = leakage coefficient 

 𝜏𝑟 =
𝐿𝑟

𝑅𝑟
 = rotor time constant 

 𝜔𝑟  = motor angular velocity (rad/s) 

  



 _______________________________________________________________________  

8 
 

2.4 Designing and Implementing the EKF to the Motor Model: 

2.4.1 Extension of the state vector to add rotor angular speed as a state variable: 

In the above dynamic model of the Induction Motor, if we include the rotor angular 

speed as one of the state variables the model becomes nonlinear.[8] With the inclusion of 

the rotor angular speed as one of the state variables the equations above change in the 

following ways: 

𝑋 = [𝑖𝑑𝑠
𝑠 𝑖𝑞𝑠

𝑠 𝜑𝑑𝑟
𝑠 𝜑𝑞𝑟

𝑠 𝜔𝑟]
𝑇    (2.21) 

𝑌 =  [𝑖𝑑𝑠
𝑠 𝑖𝑞𝑠

𝑠 ]𝑇 = 𝑖𝑠      (2.22) 

𝑢 =  [𝑉𝑑𝑠
𝑠 𝑉𝑞𝑠

𝑠 ]𝑇       (2.23) 

A =  

−
1

𝑇𝑠
∗  

0 𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

1

𝜏𝑟
 𝜔𝑟

𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 
0 

0 −
1

𝑇𝑠
∗  −𝜔𝑟

𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 
𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

1

𝜏𝑟
 

0 

𝐿𝑚

𝜏𝑟
 

0 
−

1

𝜏𝑟
 

−𝜔𝑟  0 

0 𝐿𝑚

𝜏𝑟
 

𝜔𝑟 −1

𝜏𝑟
 

0 

0 0 0 0 0 

 

𝐵 =  

[
 
 
 
 
 

1

𝜎𝐿𝑠
0

0
1

𝜎𝐿𝑠

0
0
0

0
0
0 ]

 
 
 
 
 

  𝐶 =  [
1 0 0 0 0
0 1 0 0 0

]  

Where, 

1

𝑇𝑠
∗ =  

𝑅𝑠+ 𝑅𝑟 (
𝐿𝑚
𝐿𝑟

)
2

𝐿𝑠
′        (2.24) 

  𝐿𝑠
′ =  𝜎𝐿𝑠       (2.25) 
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2.4.2 Discretization of the IM Model:  

Because of the nonlinearity of the model, the designing of the EKF becomes 

important. But for the implementation of the EKF, the discretization of the IM model 

equations are required. Discretizing the IM model equation above we get the following 

equations: 

𝑋𝑘 = 𝐴𝑑𝑋𝑘−1 + 𝐵𝑑 𝑢𝑘−1     (2.26) 

𝑌𝑘−1 = 𝐶𝑋𝑘−1       (2.27) 

𝐴𝑑  ≈ 𝐼 + 𝐴𝑇        (2.28) 

𝐵𝑑  ≈ 𝐵𝑇        (2.29) 

Ad =  

1 − 
𝑇

𝑇𝑠
∗ 

0 𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟𝜏𝑟

 
𝜔𝑟𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 
0 

0 
1 − 

𝑇

𝑇𝑠
∗ −

𝜔𝑟𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 
𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟𝜏𝑟

 
0 

𝑇𝐿𝑚

𝜏𝑟
 

0 
1 −

𝑇

𝜏𝑟
 

−𝑇𝜔𝑟  0 

0 𝑇𝐿𝑚

𝜏𝑟
 

𝑇𝜔𝑟  
1 −

𝑇

𝜏𝑟
 

0 

0 0 0 0 1 

 

The sampling time used in the discretization plays a relatively very important role 

in obtaining accurate results. This will be discussed more in detail in the simulation and 

experimental design sections. Usually smaller sampling time corresponds to lower cyclic 

loops of the EKF and better accuracy, while it is important to note that the sampling time 

shouldn’t be shorter than the time taken for implementation of each loop in EKF algorithm. 

The compromise between accuracy and stability is needed during the sampling time 

assessment. 

The system noise is given as vk which is assumed to be zero mean white Gaussian 

noise, independent of the state vector and has covariance matrix Q. The system model after 

this is represented as:  

𝑋𝑘 =  𝐴𝑑𝑋𝑘−1 + 𝐵𝑑 𝑢𝑘−1 + 𝑣𝑘−1     (2.30) 
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Similarly, the measurement noise is given as wk which is assumed to be zero mean 

white Gaussian noise, independent of the state vector and the system noise and has a 

covariance of R. The output model after this is represented as: 

  𝑌𝑘−1 = 𝐶 𝑋𝑘−1 + 𝑤𝑘−1      (2.31) 

 

2.4.3 Determination of the Noise and State Covariance Matrices  

The System Noise and Measurement Noise covariance matrices Q and R have 

element numbers that are varying based on the number of state variables.[8] The matrix Q 

is a five-by-five matrix because of 5 state variables and R is two-by-two matrix because 

of 2 output states. But since it is assumed that there is no correlation between the noises, 

we can assume both the covariance matrices to be diagonal matrices. This assumption 

reduces the complexity of the calculation. 

The noise matrices are important for initialization because the idea of KF depends 

on the inclusion of the noise factors to get a very approximate estimate of the estimated 

quantity. In our model, the direct and quadrature axes parameters are usually the same, 

that further reduces the complexity in the calculation and initialization of the covariance 

matrices, where (q11= q22, q33= q44, r11=r22). This reduced complexity helps us define 

the noise matrices with just 4 variables like shown below. 

𝑄 =  

[
 
 
 
 
𝑞11 0
0 𝑞11

0 0
0
0

0
0

0 0 0
0 0 0

𝑞33 0 0
0 𝑞33 0
0 0 𝑞55]

 
 
 
 

  𝑅 =  [
𝑟 0
0 𝑟

] 

 

2.4.4 Implementation of EKF Algorithm: 

The discretized model of the machine and the implementation of the EFK 

algorithm looks like as shown in Fig 2.3, in the modular block representation. The 

representation is divided into two sections the Machine Model with the continuous time 

domain and the EKF model with the discrete time domain. The interaction between the 

two models and their separation is shown with the dotted line.  
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Figure 2.2: Structure of EKF [2] 

 

2.4.4.1 Initialization of state vectors and covariance matrices 

At the beginning, all the initializing values for the state vector is X0 = X(t0) and 

the noise covariance matrices are Q0(5x5) and R0(2x2).  The initial values of Q and R are 

selected randomly. The filter requires the tuning of the Q and R according to the mode of 

operation, this is discussed in more detail in Chapter 3.  And the state covariance matrix 

initialized at P0(5x5). The state covariance matrix is considered a diagonal matrix with all 

elements same for the initialization.  

2.4.4.2 Prediction of the state variable 

The state variable is predicted for the sampling time instant (k) is obtained from 

the input uk-1 and the state vector �̂�𝑘−1.  

 𝑋𝑘
∗ = 𝐴𝑑�̂�𝑘−1 + 𝐵𝑑 𝑢𝑘−1       (2.32) 

Where, 

 �̂�𝑘−1 = [�̂�𝑑𝑠|𝑘−1  �̂�𝑞𝑠|𝑘−1  �̂�𝑑𝑟|𝑘−1
 �̂�

𝑞𝑟|𝑘−1
 �̂�𝑟|𝑘−1]

𝑇
   (2.33) 

 𝑢𝑘−1 =  [𝑉𝑑𝑠|𝑘−1 𝑉𝑞𝑠|𝑘−1  0  0  0]
𝑇
     (2.34) 
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2.4.4.3 Estimation of the Covariance Matrix of Prediction: 

The covariance matrix of prediction is estimated as 

𝑃𝑘
∗ = 𝐹𝑘�̂�𝑘−1𝐹𝑘

𝑇 + 𝑄       (2.36) 

here the function F  is the Jacobian (gradient function) of the system model function 

described earlier that linearizes the model. The function F is defined as 

𝐹𝑘 = 
𝜕

𝜕𝑥
 [𝐴𝑑𝑋 + 𝐵𝑑𝑢]|

𝑥= 𝑥𝑘−1,𝑢𝑘−1

     (2.37) 

Fk = 

1 − 
𝑇

𝑇𝑠
∗ 

0 𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟𝜏𝑟

 
𝜔𝑟𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 
𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 𝜑𝑞𝑟  

0 
1 − 

𝑇

𝑇𝑠
∗ −

𝜔𝑟𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 
𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟𝜏𝑟

 −
𝑇𝐿𝑚

𝐿𝑠
′ 𝐿𝑟

 𝜑𝑑𝑟  

𝑇𝐿𝑚

𝜏𝑟
 

0 
1 −

𝑇

𝜏𝑟
 

−𝑇𝜔𝑟  𝑇𝜑𝑞𝑟  

0 𝑇𝐿𝑚

𝜏𝑟
 

𝑇𝜔𝑟  
1 −

𝑇

𝜏𝑟
 

𝑇𝜑𝑑𝑟  

0 0 0 0 1 

 

Where, 

𝜔𝑟 = �̂�𝑟|𝑘   𝜑𝑑𝑟 = �̂�𝑞𝑟|𝑘   𝜑𝑞𝑟 = �̂�𝑞𝑟|𝑘 

2.4.4.4 Kalman Gain computation 

The Kalman gain matrix is a five-by-two matrix for this model of IM we are modeling. 

And is given by the following formula that includes the measurement noise parameters as 

well. 

𝐾𝑘 = 𝑃𝑘
∗𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
∗𝐻𝑘

𝑇 + 𝑅𝑘)−1    (2.38) 

here the function Hk is the Jacobian (gradient function) of the output model function 

described earlier that linearizes the model. The function Hk is defined as 

𝐻𝑘 = 
𝜕

𝜕𝑥
[𝐶𝑑𝑋]|

𝑥𝑘=𝑋𝑘
∗  

      (2.39) 

𝐻𝑘 =  [
1 0 0 0 0

0 1 0 0 0
] 
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2.4.4.5 State Vector Estimation: 

The final estimated state vector and the output models after the filtering at time 

(k+1) is given as: 

�̂�𝑘 = 𝑋𝑘
∗ + 𝐾𝑘�̃�𝑘        (2.40) 

�̃�𝑘 = 𝑌𝑘 − �̂�𝑘         (2.41) 

�̂�𝑘 =  𝐶𝑑 𝑋𝑘
∗          (2.42) 

2.4.4.6 Correction of the Covariance Matrix of Prediction for next loop: 

The error covariance matrix is obtained from 

�̂�𝑘 = 𝑃𝑘
∗ − 𝐾𝑘  𝐻𝑘𝑃𝑘

∗         (2.43) 

With the last step the loop ends for 1 cycle, for the next sampling time instant that 

is k+1, now the values in the loop are updated by putting k = k+1, and repeating the process 

from 2.4.4.2 to 2.4.4.6. 
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Chapter 3  

Simulation of IM and EKF in Simulink Matlab 

 

In the previous chapter, we developed the mathematical modeling of the EKF and 

the IM equations for the estimation of the rotor speed. In this chapter, we will continue 

with mapping those equations into the Matlab Simulink and look at the preliminary 

simulation results. 

3.1 Model of IM and Control Strategy: 

The following model of the IM used in this thesis simulation is helped to develop 

by Mr. Pavel Karlovsky. The motor drive control strategy used in this simulation includes 

Predictive Torque Control which is one of the categories of Model Predictive Control 

(MPC). They are the most commonly used motor drives in sync with the sensorless motor 

drive controls. The Simulink Model of the IM, Control strategies and the inclusion of the 

Filter Block developed is given below: 

 

Figure 3.1: Simulink Model of the estimation of rotor speed of IM with the control mechanism 
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The major blocks in this simulation include the Reference Block, Predictive 

Torque Control Block, Inverter Block, Induction Motor Block (from left to right on Figure 

4.1 on the top shelf) and the EKF block at the bottom. Each of the Blocks internal 

schematic are discussed ahead. 

 

3.1.1 Reference Values Block 

In this block the DC-Link voltage reference values, Flux Reference and the Torque 

reference with the PID controller that gives torque output, with the limitation to 5 Nm, 

with the comparison between the Reference Values of the Speed and the Measured Speed 

Value. The Reference Values are forwarded to the Predictive Torque Control Block.  

 

Figure 3.2: Reference Values Block 

 

3.1.2 Predictive Control Block 

In this block, the Predictive Torque Control (PTC) for the motor drive is 

employed, it employs the prediction and the cost function block which sends the selected 

vector signal from the calculated cost function from the prediction to the Inverter Block 

next to it. The schematic of the model is presented below along with the cost function 

equation. 
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Figure 3.3: Block diagram schematic of IM drive Model Predictive  Control [10] 

The Cost function g is given by: 

𝑔(𝑛) = 𝑘 ∗ ||𝜑𝑠(𝑘 + 1)| − |𝜑𝑠|
∗| + |𝑇(𝑘 + 1) − 𝑇∗|   (3.1) 

Where,   𝑘 =  
𝑇𝑛

|𝜑𝑛|
       (3.2) 

Here, the coefficient k in equation 3.1 determines, what impact the two part of the 

equation have on the resulting value. It is chosen as a fraction of nominal torque and 

nominal flux amplitude of the motor as shown in equation 3.2 [10] 

 

3.1.3 Inverter Block 

The topology of the inverter and the vector selection based on the vector number from the 

previous block is presented here. This also includes the αβ to abc transformation block in 

the end section. The figurative representation of the voltage selection diagram and the 

equation is presented below in Fig: 3.4. 

In accordance with the Fig 3.4, the voltage equation becomes: 

𝑉𝑆 =  
2

3
∗ 𝑉𝐷𝐶 ∗ (𝑉𝑥𝛼 +  𝑗𝑉𝑥𝛽)     (3.3) 

Here,   Vs = stator voltage 

  VDC = DC link voltage 

  𝑉𝑥𝛼 , 𝑉𝑥𝛽 =  the alpha and beta components of the selected voltage vector 
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Figure 3.4: Voltage vector diagram 

 

3.1.4 IM Model Block 

The IM motor model block has a lot of sub blocks constructed inside it. The 

modeling of the IM is based on the IM equations of rotor flux and stator currents and also 

the moment and torque calculations. The first overview of the IM block is given below: 

 

Figure 3.5: IM block representation 

The parameters of the motor used in the simulation have been based on the 

laboratory motor model available. The motor parameters used in the simulation are listed 

in the appendix along with the two axis model IM equations. 
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3.2 EKF Model 

The bottom block in Figure 3.1 corresponds to the EKF Block. The primary input 

variables to the EKF block are the terminal voltage and currents. They are extracted from 

the Inverter and the Induction Motor output ports. While in the laboratory setup they are 

analyzed by sensors and fed to the microprocessor unit that operates the filter algorithm 

and its computations. The internal schematics of the block are given below. 

 

Figure 3.6: EKF block 

 

3.2.1 EKF algorithm 

As discussed in the previous chapter the EKF algorithm is modeled in the EKF 

block for the prediction and estimation. The algorithm takes terminal voltages and current 

from machine model, and the other inputs are state vector matrix and covariance matrix of 

estimation or state covariance matrix. It returns the new predicted state vector, Predicted 

Output and the updated state covariance matrix and the estimated rotor speed. The 

algorithm developed and written in Matlab is presented below: 
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function [X_new,Ys,P_new,w] = fcn(U,Y, X,P) 

  

%motor constants 
Lsr=0.63866; 
Ls=Lsr+0.04621; 
Lr=Lsr+0.04986; 
Rs=10.79; 
Rr=6.674; 

  
%user defined working variables 
Ts = 15e-5; 
kr = Lsr/Lr; 
R_sigma = Rs+Rr*kr*kr; 
sigma = 1-Lsr*Lsr/Ls/Lr;  
tau_sigma = (sigma*Ls)/R_sigma; %T*s variable 
tau_r = Lr/Rr; 
pp =2; 

  
Lss = sigma*Ls;  

%for 5*5 we need to define w from the existing variable 
w = X(5,1); 

  
%Discretized A 
A = [(1-Ts/tau_sigma) 0 Ts*Lsr)/(Lss*Lr*tau_r)

 w*(Ts*Lsr)/(Lss*Lr) 0; 
     0 1-(Ts/tau_sigma) -w*(Ts*Lsr)/(Lss*Lr)

 (Ts*Lsr)/(Lss*Lr*tau_r) 0; 
     (Ts*Lsr)/tau_r 0 1-(Ts/tau_r) -Ts*w 0; 
     0 (Ts*Lsr)/tau_r Ts*w 1-(Ts/tau_r) 0; 
     0 0   0 0   1]; 

  
%Discretized B 
B = [  Ts/Lss   0; 
        0       Ts/Lss; 
        0       0; 
        0       0; 
        0       0]; 

         
C = [   1   0   0   0   0;       
        0   1   0   0   0]; 

  

  
Q = [   0   0   0   0  0;  
        0   0   0   0  0; 
        0   0   0   0  0; 
        0   0   0   0  0; 
        0   0   0   0  10]; 

  
R = [  2000   0 
       0     2000]; 
%H is the gradient matrix (Jacobian) of the output function 
H = [  1   0   0   0   0; 
       0   1   0   0   0]; 

  
X_mid = A*X+B*U; %for 5x5 this variable is X_mid 
Ys = C*X_mid; 
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w_mid = X_mid(5,1); 
phi_dr = X_mid(3,1); 
phi_qr = X_mid(4,1); 

  
%F is the gradient matrix(Jacobian) of the state matrix or state 

function 
F =[(1-Ts/tau_sigma) 0 (Ts*Lsr)/(Lss*Lr*tau_r)

 w_mid*(Ts*Lsr)/(Lss*Lr) phi_qr*(Ts*Lsr)/(Lss*Lr); 
     0 1-(Ts/tau_sigma) -w_mid*(Ts*Lsr)/(Lss*Lr)

 (Ts*Lsr)/(Lss*Lr*tau_r) -phi_dr*(Ts*Lsr)/(Lss*Lr); 
     (Ts*Lsr)/tau_r   0    1-(Ts/tau_r)  -Ts*w_mid Ts*phi_qr; 
     0   (Ts*Lsr)/tau_r   Ts*w_mid    1-(Ts/tau_r)   Ts*phi_dr; 
     0    0               0            0              1]; 

  
P_mid = F*P*F' + Q; % Covariance mtrix of prediction 

  

K = P_mid*H'*(inv(H*P_mid*H' + R)); %Kalmans Gain 

  
P_new = P_mid - K*H*P; %Updating of the  covariance matrix 

  
X_new = X_mid + K*(Y-Ys);  %Here Y is the actual measured value 

obtained 
%and Ys is the calcualted value from filter 

  
w = X_new(5,1)/pp; 

 

 

3.2.2 Tuning of the noise covariance matrices Q and R 

In the above results, we can see that the 150 μs sampling time results have lower 

oscillation amplitudes and the lower sampling items have higher oscillation amplitudes. 

This is due to the different tuning of the EKF by changing the values inside the noise 

covariance matrix Q and R. changing the values of these covariance matrices changes both 

the steady-state performance and the transient performance of the filter. For the simplicity 

of the simulation, we have assumed the machine model is ideal so the value in the first 4 

diagonal components in the Q matrix is assumed 0 (q11 = q22 = q33 = q44 =0) and only the 

noise in the last diagonal element (q55) is assumed. The two diagonal element in R matrix 

are equal (r11 = r22) as well in all the further calculation as discussed earlier in chapter 2. 

Also, in all of the experimentation through, only q55 , and r11 and r22 are changed during 

tuning. The tuning of the values of R and Q changes the stability of the filter and the 

occurrence of the ripples and the amplitude of the ripples. In low sampling times, the mean 

value of the estimate is closer to the real value but the fluctuations are higher as seen above. 

While in higher sampling values the offset is higher but the ripples are small. The balance 
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between the stability and the oscillations has to be selected.  Between the values of Q and 

R, the change in Q denotes the uncertainty in the machine model used and R denotes the 

level of noise in the measurements. Higher Q corresponds to higher uncertainty in the 

machine model used hence higher system noise. Higher R corresponds to higher 

measurement noise, and the filter subjects them to less weight during computation. Hence 

higher R causes longer computation time, making the transient performance slower. The 

matrices have been tuned on various cases accordingly, based on the sampling time used 

and the machine performance being observed is a transient response or steady state. 

 

3.3 Simulation Results from Matlab Simulink 

The simulation of the above model and the filter algorithm for the parameters of 

the laboratory IM is done. The simulation was done for multiple sampling times (20 μs, 

and 150 μs). The simulation results are presented below. Figure 3.7 shows the graphical 

representation of the induction motor run over time, as we start the motor from a standstill 

and take it to 1500rpm. At 6s, the motor stands to decelerate from 1500rpm to reach rotor 

speed of 1000rpm. The variations in the rotor speed, the torque generated by the motor, 

Stator flux amplitude and one of the phase currents is seen. Because the simulated was 

tried to represent as much as the real model the addition of white noise to both current and 

voltages have been done in the simulations both at 10% of the peak levels of individual 

quantities respectively and relatively high offset level of 1A was added accordingly. 

Figure 3.8 shows the simulation results of the EKF predicted output current 

compared to the current from the IM. In both cases, only one of the phases is shown for 

graphical clarity. 
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Figure 3.7: Simulation Results of the IM parameters. 

 

 

Figure 3.8: Comparison of IM Measured Current and EKF estimated Current 
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Figure 3.9 shows the simulation results of the EKF estimated Rotor Flux and the Rotor 

Flux as seen from the IM. In both cases, only one of the phases is shown for graphical 

clarity. 

 

Figure 3.9: Comparison of IM Measured Rotor Flux and EKF estimated Rotor Flux 

Figure 3.10: Simulation comparison between Measured IM speed and EKF estimated speed for  

20 μs sampling time with noise. 
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Figure 3.11: Detailed view of the speed comparison in steady state for Figure 3.10 

 

 

 

Figure 3.12: Simulation result comparison between Measured IM speed and EKF estimated speed 

for  150μs sampling time with noise. 
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Figure 3.13: Detailed view of the speed comparison in steady state for Figure 3.12 

 

The two different cases of differing sampling time are shown in the above 4 sets 

of figures. From the above results, we can see that the lower sampling time makes the 

estimations more accurate and as the sampling time increases the offset is more. 

 

Figure 3.14: Simulation results without any noise and added offsets in the Measured and 

Estimated speeds. 
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Figure 3.15: Detailed view of the speed comparison in steady state for Figure 3.14 

 

 

Figure 3.16: Simulation result comparison between Measured IM speed and EKF estimated speed 

for  20μs sampling time and observing the state of speed reversal with noise. 
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Figure 3.17: Detailed view of Figure 3.16 in the speed reversal region 

In the above figures, we can see that the filter algorithm works reliably under the condition 

of speed reversal as well, as the reference is changed from 1500 rpm to -1500 rpm and 

back to 1500 rpm. 

 

3.4 Concluding the Simulation Results 

From the above figures and results, we can validate the estimation made by the 

EKF algorithm that has been developed. Presented Figures show the transients, steady 

states and the speed reversal conditions of the motor. From, the two different cases of 

differing sampling time that are shown in above figures, we can conclude that the lower 

sampling time makes the estimations more accurate and as the sampling time increases the 

offset is more. And the results without noise are very accurate with less offsets, while even 

with noises the model works reliably. These results give validation to proceed with the 

simulation to laboratory hardware assembling and implement the filter on a real drive with 

induction motor. On the next chapter, we will evaluate the workplace of the laboratory 

where the filter model will be implemented. 
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Chapter 4 

Description of the Workplace and Hardware Assembled 

 

In previous chapter, we discussed the simulation results and their validity to proceed with 

the hardware assembling and laboratory implementation of the speed estimation model 

with EKF. The real drive with induction motor was assembled in the laboratory H26, 

Department of Electric Drives and Traction, Faculty of Electrical Engineering. 

 

4.1 The Circuit Diagram 
The circuit diagram of the assembled circuit is given below in Fig 4.1: 

 

Figure 4.1: Circuit schematic of the assembled circuit 

 

4.2 List of Hardware assembled 

The list of hardware assembled for the realization of the schematic is as follows: 

1. Rectifier: M Diode Rectifier 

Rated Current:   63 A 

Rated Voltage:  600 V 
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2. Current and Voltage Measurement interface for the DS1103:  

Rated Current:   200A 

Rated Voltage:   800V 

In every LEM current sensor, there was five turns of the phase wire in 

order to increase the measurement accuracy, so the maximum current for 

each coil was 40A. Since the induction motor rated current is 2A only, 

more turns could have been present in order to increase the accuracy more. 

But because of the space limitation we could not accommodate more coil 

turns to increase the accuracy of the sensor. 

 

3. IGBT:  

6 CM100DY-24NF IGBT [11] by Mitsubishi Electric used for motor 

control, with 2 more used as a safety layers in case of overvoltage , with 

a break resistor R1 rated at 420Ω. 

 

4. DC-Link Capacitors:  

Rated Voltage:   450 V 

Rated Capacitance:  4700 µF  

Two capacitors of the above rated parameters each, connected in series to 

make capacitor bank for the DC-link. 

 

5. Induction Motor: 

Y-connnected 

Rated Voltage:   380 V 

Rated Current:  2 A  

Rated Power:   750 W 

Nominal speed:  1380 rpm 

Power Factor (cosφ): 0.79 

Frequency:  50 Hz 

 

6. DC Motor: 

Rated Power:   1.2 kW 

Armature: 

 Rated Voltage:  400 V 

 Rated Current:  3.8 A 
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Field Excitation Circuit: 

 Rated Voltage:  220 V  

 Rated Current:  0.6 A 

Nominal Speed:  1650 rpm 

 

7. Permanent Magnet Tachometer: 

Tachometer aligned to the same shaft as the DC motor and Induction 

motor. The tachometer is calibrated at 80V/1000 rpm 

 

8. Resistors: 

For overvoltage protection (R1):  1.2 A  420 Ω 

For DC motor Field excitation (R2):  4 A  39 Ω 

For DC Motor Armature Winding (R3):  0.63 A 200 Ω 

(3 resistors used in series)  1.6 A  250 Ω  

     2.5A  105 Ω 

 

9. DS1103 PPC Controller Board [12]: 

The dSPACE board is used as a microcontroller along with its controller 

UI desk. In the above circuit the measurements from the points U1, U2, 

I1, I2, I3 and I4 are taken to process and compute the required 

measurement quantities. U1 was used for the dc-link voltage for the 

inverter calculations, U2 was used to get the measured speed of the motor, 

I1 and I2 for the stator current measurements and I3 and I4 for the load 

measurements. 

 

10. Voltmeter: 

One Voltmeter rated at 600V is used to check the DC-link voltage. 

 

11. Ammeter:  

Three Ammeters are used at: the Excitation winding of the DC motor, 

Armature of the motor DC motor, and the input to one of the windings of 

the Induction motor. There were used to ensure the currents do not exceed 

the rated current while changing the load values for the experiment. DC 

ammeters and AC millimeters were used accordingly in circuits. 
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12. Oscilliscope: 

Rohde and Schwarz RTO 1004 Oscilloscope used for visualization of 

results in the real time interface and collection of data points for further 

processing.  

The measurement data collected were obtained from the Oscilloscope. 

The Oscilloscope was given inputs from the output of the DAC ports from 

the DS1103 board. The measurement data were stored in the Oscilloscope 

memory and collected. 

 

The picture of the assembled hardware is presented below.  

 

Figure 4.2: Workplace and the assembled hardware 

 

Besides the hardware, the dSPACE control desk project UI is presented below in Fig 4.3. 

The Matlab Simulink file was compiled and uploaded into the DS1103 and the control UI 

was the dSPACE control desk from the laptop.  
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Figure 4.3: dSPACE control desk project UI 
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Chapter 5 

Experimental Results 

After assembling the hardware, we experimented the various cases of the motor 

operations that included the loaded and unloaded operations, changing the values of filter 

noise covariance matrices Q and R and their effects on transient and steady-state 

performances and tuning them based on the desired operation, low speed performance and 

the performance under varying load. 

Regarding the sampling time of the experimentation loops, all the experimentation 

was done with a sampling time of 150µs. This is because we could not gain a better 

sampling time in the experimentation due to the computational limitation of the hardware 

used (DS1103) and computational requirements of the filter. 

5.1 Steady State Operation of the Motor. 

5.1.1 Loaded steady state operation of the motor. 

We evaluated the operation of the motor under loaded conditions, under varying 

speeds. The following graphs show the result of the experimentation. The measured and 

estimated speed are shown in Fig 5.1. 

 

Figure 5.1: Loaded steady state operation of the motor. 
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The Figure 5.2 shows the detail of the steady state speed of the motor and filter. 

 

Figure 5.2: Detailed view of Figure 5.1 in the high-speed steady state region. 

 

From the 2 figures, we can see that the normal loaded operation of the motor and 

its estimated speed from the EKF is not very different. It can be seen that the offset is 

very low in the loaded condition. The unloaded conditions are evaluated below. 

 

5.1.2 Unloaded steady state operation of the motor. 

After evaluation of the loaded conditions of the motor we did an experiment run 

without any load on the motor (minimal load possible), the results of the unloaded 

experiment is presented below. From the presented results it can be seen that the offset in 

the unloaded conditions is higher than in the loaded condition. 
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Figure 5.3: Unloaded steady state operation of motor. 

 

 

Figure 5.4: Detailed view of Figure 5.3 in the high-speed steady state region. 
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5.1.3 Comparison of loaded and unloaded operation mode 

 

Figure 5.5: Comparison of loaded and unloaded operations mode in steady state 

In Fig 5.5, we can see the comparative results of the operation of the motor initially under 

unloaded condition. When running the motor around 1500 rpm, we can see that the offset 

is significant in the unloaded case. At around 21s, the load is switched on. The following 

section in the oscillograms after 21s shows the changes in the estimated speed and its 

reduced offset. The changes in the loaded and unloaded conditions are due to the 

effectiveness of the measurement of current from the current sensors. With higher load, 

the current is more precisely measured and the estimation is better computed using the 

measured currents. This is evident from the above figures. 

 

5.2 Tuning of covariance noise matrices Q and R 

Earlier we discussed the effect of changing the covariance noise matrices Q and R on the 

effect of the estimation during tuning the EKF. In the following section, we discuss the 

experimental results from the collected data about the effect of varying Q matrix while 

keeping R constant and vice versa. From this measurement and discussion of the results, 

we can tune the filter for transient or steady state performance. 
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5.2.1 Keeping R constant and varying Q in steady state 

Like we stated in chapter 3 we are only tuning for the q55 in matrix Q when we are tuning 

for matrix Q. 

 

Figure 5.6: Varying Matrix Q while keeping R constant at 2000 in steady state. 

From the figure, we can see that the higher the value of matrix Q, the higher the offset 

from the measured valued in the mean position. We can conclude from this that the matrix 

Q has to be stabilized to lower values for the more stable and reliable estimation. 

 

5.2.2 Keeping Q constant and varying R 

For matrix R the diagonal elements r11 = r22.  Like in the case of tuning for matrix Q, for 

matrix R also we changed the value of R and while keeping Q constant at 10.  

From figure 5.7 below we can see that, higher values of R causes lower offset and as the 

value of R decreases the offset increases significantly. 

From the tuning of Q and R in steady state regions we can say that higher values of R and 

lower values of Q are more desired for more stable and reliable estimation from the EKF. 
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Figure 5.7: Varying Matrix R while keeping Q constant at 10. 

5.2.3 Varying Q while keeping R constant at 2000 in transients. 

 

Figure 5.8: Varying Matrix Q while keeping R constant at 2000, for transient response. 
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Figure 5.9 Comparison of rise time during transients for different Q values (R = 2000) 

 

 

Figure 5.10: Comparison of fall time during transients for different Q values (R = 2000) 



 _______________________________________________________________________  

40 
 

In figure 5.8 we can see the transient responses for 2 different values of Q. Figure 5.9 

shows the comparison of rising transient characteristics. From the figure, we can see that 

the rise time for higher Q value is faster and the estimation is more accurate than for the 

lower Q value. In figure 5.10, we can see the fall transient characteristics. Here in the case 

of higher Q value, the transient has better estimation in the initial stage but as the final 

value is reached the estimation has an overshoot peak, which is damped very quickly 

though. However, in the case of the lower Q value, the fall time is much higher and the 

deviation is higher in estimation as well. 

From the above experimentation, we can say that the lower Q values are preferred in stable 

states and moderate Q values are preferred for the faster transients. For a mixed operation, 

the balance between lower offset and faster transient is chosen as per the necessities. 

Because of this reasons for all the experimentation, for steady state Q = 10 and R = 2000 

is taken, and for the transients, Q=50 and R =2000 is taken. 

 

5.3 Operations in Speed Reversal Mode with changing slew rates. 

During experimentation, we evaluated the speed reversal condition of the motor. The 

reversal was done for varying slew rates and the effect of the slew rates was observed. 

Three different slew rates of  0.05 and 1.5  were observed for loaded condition and the 

slew rate of 1.5 was observed for the unloaded condition.  

 

Figure 5.11: Unloaded Speed Reversal Transients with slew rate of 1.5 
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Figure 5.12: Comparison of loaded Speed Reversal Transients with slew rate of 0.05 and 1.5 

Reference: a slew rate of 0.05 takes 9 seconds to fall or rise 3000rpm, while a slew rate 

of 1.5 is much quicker to fall or rise with only about 0.75s to rise or fall similar range of 

3000 rpm. A higher slew rate shows the faster change. 

In figure 5.12 we can see that the estimation from EKF looks very approximate 

with the measured speed under the lower slew rates, while in the faster transients the 

deviations and midway overshooting is observed. The offset in the steady-state region is 

also very moderate in loaded conditions as compared to the unloaded conditions too. And 

for the unloaded condition from figure 5.10 the transients look much more unstable and 

multiple overshoots are observed midway. For faster transients, the speed reversal at 

surrounding areas of 0 has higher deviations in the midway regions for both loaded and 

unloaded conditions. The filter estimation is deviating highly from the actual measured 
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speed in those regions. But for the lower slew rates, the same problem is not observed as 

seen in the above graphical results. 

 

5.4 Low-Speed Performance 

The low-speed performance of the filter is presented below. In figure 5.13, we can 

see that the performance of the filter is less reliable as the speed reaches towards zero 

crossings for the speed reversal. The deviations are highest around the zero crossings. 

Filter reliability is greatly reduced in the areas between the ranges of +20 to -20.  

 

Figure 5.13: Low-Speed performance with zero crossings (60 to -60) 

 

 

5.5 Performance under varying load. 

Upon the completion of all the other experimentation, we tested the operation of 

the motor under varying loads and the change in torque generated by the motor. The 

relation between toque generated by the motor and the change in the speed of the motor 

accordingly was observed. The induction motor speed was controller by the PI controller 

and the load was adjusted by the variable resistor in the DC motor armature curcuit. The 
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load was started from minimum and set to generate around 4 Nm torque in the peak 

conditions. The developed graphical results are presented below. 

 

Figure 5.14: Measured and Estimated speed under varying loads with various speed references 

From the above figure, we can see that the filter reliability is low when the load in 

the motor is very low as in the unloaded operations. But as the load increases the filter 

reliability increases and the offset is reduced. Near the regions of the optimal load, the 

estimated speed from the filter is as close as the real measured speed.   
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Chapter 6 

Conclusion 

Motor control has been an essential part of the industrial sector. With the 

automated controls, we are moving farther and distant from the manuals controls every 

other day. The reliance on sensors has been decreasing and the automation towards 

sensorless controls has been the new wave of control mechanisms. The elimination of 

sensors makes the control strategy more economically viable. With the increasing 

computational power of smaller ICs, the dependence on the algorithms for estimations of 

speed with high reliability on the output has been a greater advantage for this control 

sector. Going with the theories behind one of the estimation algorithms, in this thesis paper 

we tested one of such algorithms: Extended Kalman Filter. An EKF was designed, 

developed, and implemented with the hardware realization on a laboratory motor. 

The results of the experiment were in accordance with the simulations. The 

hardware implementation in this project paper gave the idea of the difficulties when 

moving from simulation model to real hardware. One of such instances was the limitation 

of the computation power of the signal processor used. While in simulations, the lower 

sampling times were achieved with lower offsets, in the hardware scenarios, the sampling 

times were limited to 150µs. This lead to the expectance of the offsets in the estimated 

results from the EKF. While in some fronts the hardware developments with the real-time 

interface were much easier to control than in simulations, like the tuning of the filter 

covariance matrices and the assessment of the transient dynamic. 

The results in this thesis show the effectiveness of the filter with low error 

percentages under the right tuning of the filter covariance matrices. The results show that 

tuning of covariance matrices in the filter plays a big role in the ultimate output of the filter 

and its accuracy. As discussed prior, based on the suitability of the applications being 

transient analysis on the motor or the steady-state responses of the motor the tuning should 

be done accordingly. The results from chapter 5 show the differences in the tuning 

parameters, and their necessity to be chosen appropriately. 

With the right tuning parameters, the filter accuracy can be discussed from the 

results very clearly. The loaded and unloaded operation of the motor shows the difference 

in offsets, mainly due to the current sensitivity of the current sensors used. We can state 
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from the loaded conditions that the filter behaves very accurate even under unloaded 

conditions if more sensitive current measurement devices are taken into consideration. 

Similar to the loaded and unloaded operations in steady-state conditions at normal speeds, 

the performed tests show that the filter works properly in speed reversal conditions as well. 

This is an important aspect in the case of bidirectional motors. The reliability of the filter 

in both the direction of the rotation axis shows the filter versatility and accuracy.  

For the low-speed regions, the reliability of the filter has been worse. There is a 

room for improvement in the filter algorithm that can access these low-speed estimations 

with very low-speed dynamics during speed reversals near zero crossings. 

Besides the low speed and offset issues, other regions for decreased reliability in 

the filter could be because of the system description not being 100% accurately described. 

The parameters of the motor were measured in certain operation point (loaded motor) and 

with some uncertainty. Moreover, the changes that occur with the temperate on resistances 

and load magnetization curves of inductance is not taken into consideration. Also the 

sampling time taken from the computational device is very long. And the measurement of 

current was in the range of 40A accuracies while the motors nominal current was around 

2A. The voltages were calculated from the DC link and transistor combination, so the other 

nonlinearities in the model due to switching time delays and voltage drops of the inverter 

are also not considered. In regards to these factors not being in consideration, the 

estimation can be made better with the inclusion of these factors in future. 

Overall the development and performance of the filter form this thesis 

experimentation and simulation can be said to be accurate small deviations and offsets in 

nominal steady states, while the room for improvement is always there. The tested results 

for various operating conditions as discussed above serve as backing data for the 

effectiveness of the filter developed. 

 

Work for Future. 

While the extent of this thesis was limited to the estimation for the speed of the 

IM without any speed sensors, the work from this experiment can be carried further ahead 

on the other control experiments. The estimated speed can be fed back as a closed loop 

control for sensorless vector control of the IM. This regime of control is the new control 
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strategy that is more economic with the employment of fewer sensors and is also 

economically more suitable. 

Further work can be done as discussed above on the better representation of the 

model considering all the other factors stated above. Besides that the computational 

requirements can also be reduced for faster sampling times with code optimization.  
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Appendix 

A.1 Parameters of IM 

The simulated IM’s parameters are illustrated below: 

Parameters Values Unit 

RS 10.79 Ohm 

RR 6.674 Ohm 

LS 0.68487 H 

LR 0.68852 H 

LM 0.63866 H 

P 2 number 

 

 

A.2 Equations of IM 

The equations used to build the model of IM in Simulink are illustrated below: 

𝑣𝑆⃗⃗⃗⃗ =  𝑅𝑆 ∗ 𝑖𝑆⃗⃗ + 
𝑑𝜓𝑆
⃗⃗ ⃗⃗  

𝑑𝑡
 

0 = 𝑅𝑅 ∗ 𝑖𝑅⃗⃗  ⃗ + 
𝑑𝜓𝑅
⃗⃗ ⃗⃗  ⃗

𝑑𝑡
+ 𝜔𝑅 ∗ 𝜓𝑅

⃗⃗ ⃗⃗  ⃗ 

𝜓𝑆
⃗⃗ ⃗⃗  = 𝐿𝑆 ∗ 𝑖𝑆⃗⃗ +  𝐿𝑀 ∗ 𝑖𝑅⃗⃗  ⃗  

𝜓𝑅
⃗⃗ ⃗⃗  ⃗ = 𝐿𝑅 ∗ 𝑖𝑅⃗⃗  ⃗ +  𝐿𝑀 ∗ 𝑖𝑆⃗⃗   

𝑇 = 
3

2
∗ 𝑃 ∗ (𝜓𝑆

⃗⃗ ⃗⃗  ×  𝑖𝑆⃗⃗ ) 

 

 


